Conversion of Methyl Radicals to Methanol and Formaldehyde over Vanadium Oxide Catalysts

Sergei Pak, C. Edwin Smith, Michael P. Rosynek, and Jack H. Lunsford*

Department of Chemistry, Texas A&M University, College Station, Texas 77843

Received May 13, 1996; revised August 19, 1996; accepted August 20, 1996

Methyl radicals, formed by the thermal decomposition of azomethane, react with V₂O₅ to form methoxide ions. Infrared results confirm the presence of methoxide ions, and ESR spectra demonstrate that the reaction involves the reduction of V^{5+} to V^{4+} . The methoxide ions may either decompose to formaldehyde or react with water or surface protons to form methanol. In temperatureprogrammed reaction experiments, both methanol and formaldehyde reached a maximum concentration in the gas phase at 200-250°C over V2O5, but over V2O5/SiO2, the methanol and formaldehyde maxima were shifted to ca. 300 and 400°C, respectively. The production of CH₃OH at the lower temperature over V₂O₅/SiO₂ suggests that methoxide ions may react with water or surface protons to form methanol more quickly than they decompose to formaldehyde. Nevertheless, in continuous flow experiments at 300 and 500°C, formaldehyde was the principal oxygenated product because of the rapid oxidation of CH₃OH at this temperature, and, in the case of pure V₂O₅, the direct conversion of methoxide ions to formaldehyde appears to compete favorably with their reaction with water. © 1997 Academic Press, Inc.

INTRODUCTION

There is an increasing body of evidence which suggests that CH_3 · radicals are involved in the catalytic partial oxidation of CH_4 . In the oxidative coupling of CH_4 , the radicals emanate into the gas phase where they couple to form C_2H_6 . Catalysts that are effective for this reaction are capable of generating CH_3 · radicals, but they do not react further with the radicals (1). By contrast, other catalysts, such as MoO_3/SiO_2 , react much more extensively with methyl radicals, and, under favorable conditions, CH_3OH and/or HCHO are the gas phase products (2). The latter reactions are believed to proceed through methoxide intermediates.

In order to study these secondary reactions of CH_3 · radicals with metal oxides, independent of the more demanding radical generation step, we have chosen to produce the species by the thermal decomposition of azomethane, $CH_3N=NCH_3$, which decomposes cleanly to form CH_3 · radicals and N₂. Sticking coefficients for CH_3 · radicals reacting with several metal oxides have been measured (3), and the overall conversions of the radicals to HCHO and CH₃OH have been reported over MoO_3 and MoO_3/SiO_2 catalysts (2). Moreover, it was shown that H_2O reacted with a surface intermediate, presumably methoxide ions, to form CH₃OH at temperatures $<300^{\circ}C$.

In the present study, the reactions of methyl radicals with V_2O_5 and V_2O_5/SiO_2 are compared with those previously reported for the molybdena catalysts. The V_2O_5 catalysts are of interest because they are considerably more active for the conversion of CH₄ to HCHO than are the MoO₃ catalysts (4). Moreover, with V_2O_5 we have been able to obtain infrared evidence for the formation of methoxide ions as a result of the reaction of CH₃· radicals with the catalyst. Emphasis has been placed on the products that are formed, rather than on the kinetics of CH₃· radical reactions.

EXPERIMENTAL

The vanadium oxide (99.9%, Alfa) used in these experiments had a surface area of 7.3 m^2/g . The V₂O₅/SiO₂ catalysts were prepared by the addition of Davison Grade 57 silica gel $(330 \text{ m}^2/\text{g}, 20-42 \text{ mesh size})$ to an aqueous solution of ammonium metavanadate (99.99%, Aldrich). The slurry was evaporated to dryness, and the catalysts were heated in air for 8 h at 550°C to decompose the ammonium vanadate. Supported catalysts were prepared with 0.6, 5.1, and 10.3 wt% V₂O₅. These supported catalysts had total surface areas of 340, 290, and 240 m²/g, respectively. In addition, a pure MoO₃ catalyst was prepared by heating molybdenum(VI) oxalate (Climax molybdenum) in air from 115 to 300°C at a rate of 2°C/min. The sample was kept in air 1 h at 300°C. This process resulted in the formation of MoO₃ having a surface area of 17 m²/g. The catalysts were treated *in situ* in 1.2 Torr of flowing O₂ for 1 h at 500°C.

The apparatus and the experimental procedures for the flow and the temperature-programmed surface reaction (TPSR) studies were essentially the same as those reported previously (2). Briefly, azomethane diluted in argon (1:10) was decomposed at 950°C in a 2-mm i.d. fused-quartz tube. The initial products of the decomposition reaction were mainly CH₃· radicals and N₂. It has been shown, using a matrix isolation electron spin resonance (MIESR) system,

FIG. 1. Infrared cell.

that the flux of CH_3 radicals exiting the quartz tube was in good agreement with the amount of azomethane that was decomposed (5). The catalyst (100–200 mg) was placed about 15 mm above the point where the CH_3 radicals entered an 8-mm i.d. reactor. The radicals flowed into the catalyst bed at a rate of ca. $3 \times 10^{15} \text{ s}^{-1}$, and the residence time over the catalyst was 0.001 s. When desired, O_2 could be added before the other gases passed through the catalyst bed. The pressure upstream from the catalyst bed was typically 35 mTorr. The stable products were analyzed using an INFICON Quadrex 200 quadrupole mass spectrometer. Selectivities were determined by the equation

$$S = \frac{x_i P_i}{\sum_i x_i P_i},\tag{1}$$

where P_i is the pressure of the respective product ($P_{C_2H_6}$, P_{HCHO} , P_{CH_3OH} , P_{CH_4} , and P_{CO_2}) and x_i is the number of carbon atoms in the molecule. When operating in the temperature-programmed surface reaction (TPSR) mode, 150 mg of oxidized catalyst was allowed to react with CH₃-radicals for 30 min at 150°C. After this period, the sample was cooled *in vacuo* to 50°C, and the temperature was then increased at a rate of 23°C/min.

The infrared experiments were carried out using a Perkin Elmer Model 1750 FT-IR spectrometer. The CH_{3} · radicals reacted with the catalyst, which was in the form of a semitransparent wafer. The infrared cell is depicted in Fig. 1. During reaction, the catalyst wafer was located about 15 mm from the source of the CH_{3} · radicals. The

total pressure in the reactor was ca. 35 mTorr; the initial azomethane/argon ratio was 0.1. The temperatures of the catalyst and of the azomethane decomposition could be varied independently by using separate furnaces. The same cell was used to study the reaction of methanol with the catalyst. After reaction the wafer was lowered to a position such that it was in the infrared beam. The infrared windows were of KBr.

Electron spin resonance (ESR) spectra of the V_2O_5 catalyst were obtained using a Varian E6 spectrometer and a cell similar to that described previously (3). Spectra were recorded with the sample at 77 K.

RESULTS AND DISCUSSION

Flow experiments. Previous studies (2) of the reaction of CH₃· radicals using this system have shown that in an empty reactor at room temperature the primary hydrocarbon product (~95%) was C_2H_6 , with a small amount (~4%) of CH₄ being formed. It can be calculated that ca. 66% of the CH₃· radicals couple before they reach the catalyst bed. The CH₄ may result from the reaction of CH₃· radicals with hydrogen on the metal walls of the vacuum system (6). We did not attempt to detect H_2 ; however, in related azomethane decomposition experiments, Smudde et al. (7) demonstrated that the molar ratio of H_2/CH_3 was only 0.14. When 150 mg of silica was introduced and the reactor was heated to 300°C, the results were similar to those obtained in the empty reactor, but at 500°C somewhat more CH₄ was formed, and in the presence of O_2 ($O_2/CH_3 = 3.2$) the selectivities to HCHO and CO₂ were 4.2% and 3.2% respectively. At 500°C, the homogeneous reaction

$$CH_3 \cdot + C_2H_6 \rightarrow CH_4 + C_2H_5 \cdot$$
 [2]

may become significant.

When 150 mg of V_2O_5 was present in the reactor, the results reported in Table 1 were obtained. It is apparent that those CH₃· radicals which had not coupled before reaching the catalyst bed were extensively converted to HCHO. The

TABLE 1

Product Distribution in the Reaction of Methyl Radicals over $V_2O_5^a$

<i>T</i> ,°C	O ₂ /CH ₃ ·	C_2H_6	НСНО	CH ₃ OH	CH ₄	CO_2	∆MB,%
300	0	63.4	25.0	7.0	3.1	1.5	23
	0.04	61.4	26.5	8.8	2.0	1.4	18
	2.26	51.5	36.5	8.8	0.8	2.4	18
500	0	54.9	35.6	4.2	2.7	2.6	21
	0.1	62.6	31.2	3.1	1.1	1.9	16
	1.4	51.8	43.9	0	0.7	3.5	17

^a 155 mg of catalyst was used.

TABLE 2

Product Distribution in the Reaction of Methyl Radicals over MOQ_a^a

<i>T</i> ,°C	O_2/CH_3 .	C_2H_6	НСНО	CH ₃ OH	CH_4	CO_2	∆MB,%
300	0	45.5	9.1	41.1	4.2	0	-5
	0.15	55.2	11.3	28.8	4.5	0.2	7
	2.25	46.0	16.5	16.5	3.2	0.2	2
500	0	50.2	34.5	8.0	4.8	2.5	7
	0.15	57.7	28.6	6.5	5.0	2.1	17
	0.8	55.6	30.0	7.6	4.7	2.1	20

^a 208 mg of catalyst was used.

formation of formaldehyde is favored by higher temperatures and by the presence of O_2 , but even in the absence of O_2 , at short times on stream (see below) formaldehyde was the principal oxygenate. The major difference between the results given here for V_2O_5 and those reported previously for MoO₃ is the ratio of HCHO to CH₃OH in the products. With the V_2O_5 catalyst, considerably more HCHO was detected; however, it is difficult to compare specific activities because the surface areas of the two catalysts were so different (7.3 m²/g for the V_2O_5 and 0.3 m²/g for the previously used MoO₃). Moreover, the reactions were not carried out under differential conditions; i.e., a large fraction of the CH₃· radicals that did not couple reacted with the catalyst.

In order to have a better comparison of the reaction of CH_3 · radicals over the two oxides, results also were obtained for the MoO₃ catalyst that had a surface area of 17 m²/g, which was more comparable to the surface area of the V₂O₅ catalyst. The data of Table 2 show that a considerable amount of CH₃OH was produced over the higher surface area MoO₃, particularly at 300°C. A comparison of the results of Tables 1 and 2 suggests that either V₂O₅ is more active than MoO₃ in the partial oxidation of CH₃OH to HCHO, or, with V₂O₅, a direct pathway for the conversion of surface intermediates, e.g. methoxide ions, to HCHO is favored. With both V₂O₅ and MoO₃, the selectivity for CO₂ was small.

Experiments carried out with CH₃OH as the reagent confirm that V_2O_5 is indeed more active for its conversion to HCHO than is the high surface area MoO₃. When passing a mixture of CH₃OH in Ar, corresponding to 30% of CH₃· radicals in the flow experiments, the conversions were 80% at 300°C and 96% at 500°C over the V_2O_5 catalyst and 16% at 300°C and 81% at 500°C over the MoO₃ catalyst. The principal product over both catalysts was formaldehyde. Thus, if CH₃OH were produced from CH₃· radicals over the V_2O_5 , it could be extensively converted to HCHO at 300°C.

The column labeled $\triangle MB$ in the tables refers to a deficit in the carbon mass balance, which is defined as the difference between the expected amount of carbon, based on the amount of azomethane decomposed, and the amount of carbon detected by the product analysis. Carbon monoxide was not included as a product because of the interference from the N₂ peak at 28 amu. A positive value of Δ MB, therefore, could reflect the presence of CO as a product, which is consistent with the larger values of Δ MB observed over MoO₃ at higher temperatures and larger O₂/CH₃· ratios. Errors in determining the amount of azomethane decomposed and the amounts of the products also may contribute significantly to Δ MB. For example, a 10% error in the amounts of CH₃N=NCH₃ reacted and the products could result in a value of 20% for Δ MB. An error of this magnitude in quantitative analysis by mass spectrometry is certainly reasonable (8).

Analogous experiments were carried out over the V_2O_5/SiO_2 catalysts, in the absence and presence of O_2 , and the results are given in Tables 3 and 4, respectively. For reference purposes, the results obtained over the MoO₃/SiO₂ catalyst, in the absence of O₂, are also included in Table 3. The selectivity to C_2H_6 is indicative of the reactivity of CH_3 . radicals with the catalyst; i.e., lower selectivity to C₂H₆ results from greater reactivity of CH₃ radicals with the catalyst surface. One can conclude that even at a loading of 0.6% V₂O₅/SiO₂, the methyl radicals reacted at 300°C to form oxygenates, which is in contrast to the results on 6.6% MoO₃/SiO₂, for which 91.7% of the methyl radicals coupled to form C₂H₆. The differences in reactivities of the 5.1% V₂O₅/SiO₂ and 6.6% MoO₃/SiO₂ catalysts with CH₃ radicals and the product selectivities are less apparent at 500°C. At loadings of 0.6% and 5.1% V₂O₅/SiO₂, the principal oxygenate detected at 300°C was CH₃OH, rather than HCHO. This product distribution is different from that found with pure V₂O₅ and with the 10.3% V₂O₅/SiO₂ catalyst, for which HCHO was the main oxygenated product. Apparently, at

TABLE 3

Product Distribution in the Reaction of Methyl Radicals over MoO₃/SiO₂ and V₂O₅/SiO₂ Catalysts^a

<i>T</i> ,°C	Catalyst/ loading						
		C_2H_6	НСНО	CH ₃ OH	CH_4	CO_2	∆ MB,%
300	MoO ₃ /SiO ₂ 6.6%	91.7	5.0	0	3.0	0.2	9
	V ₂ O ₅ /SiO ₂ 0.6% 5.1% 10.3%	75.9 81.5 76.1	4.2 4.0 12.7	11.3 8.3 6.3	8.1 9.3 4.4	0.5 0.5 0.6	27 30 17
500	MoO ₃ /SiO ₂ 6.6% V ₂ O ₅ /SiO ₂	74.2	19.5	0.9	4.7	0.6	9
	0.6% 5.1% 10.3%	77.3 77.5 76.3	8.1 15.9 19.1	1.8 0 0	10.9 4.9 3.3	0.8 1.6 1.2	17 12 18

^a No O₂ was added to the CH₃./Ar flow.

Product Distribution in the Reaction of Methyl Radicals over 10.3% V₂O₅/SiO₂^a

TABLE 4

T,°C	O ₂ /CH ₃	C_2H_6	НСНО	CH ₃ OH	CH_4	CO_2	∆MB,%
200	0	82.6	5.4	5.6	6.1	0.3	45
	0.07	83.1	7.3	6.1	3.1	0.4	44
	0.45	73.7	14.6	8.9	2.1	0.6	37
	6.6	61.6	22.6	10.9	1.9	3.0	38
300	0	76.1	12.7	6.3	4.4	0.6	17
	0.08	72.4	16.1	8.5	2.0	0.9	35
	0.24	65.5	23.4	8.5	1.6	1.0	29
	4.68	55.4	29.3	11.4	1.1	2.7	28
500	0	76.3	19.1	0	3.3	1.2	18
	0.04	62.8	28.9	3.7	2.1	2.5	24
	0.95	56.0	36.3	5.2	0.6	1.9	24
	2.57	53.0	43.3	0	0.1	3.6	23

^a 104 mg of catalyst was used.

the smaller loadings the V_2O_5/SiO_2 catalysts are less effective in the conversion of CH₃OH to HCHO.

In contrast to the results that were obtained under steady state conditions when O2 was present, the catalysts were slowly reduced in the absence of O2. The results reported in Table 3 were obtained after the catalysts had been exposed to the stream containing CH_3 radicals for approximately 3 min. Longer times on stream at 500°C resulted in a decrease in the HCHO selectivity and an increase in the CH₄ selectivity. For example, over the 10.3% V₂O₅/SiO₂ catalyst the HCHO selectivity decreased from 19 to 11% during 18 min on stream, while the CH₄ selectivity increased from 3 to 11% during the same period. Curiously, the C_2H_6 selectivity remained nearly constant. The decrease in HCHO selectivity is understandable since surface oxygen is involved in its formation. The increase in CH₄ formation may be attributed to reaction 1, but this also would result in a decrease in C₂H₆. As the surface becomes less reactive, more CH₃· radicals are free to couple and form C₂H₆. The net effect is that the C₂H₆ selectivity is essentially constant.

The effects of O_2 and temperature are further evident from the results of Table 4. Generally, as the O_2/CH_3 ratio and the temperature were increased, the HCHO/CH₃OH ratio increased and the conversion of CH₃ radicals to oxygenates increased. But even at 200°C and in the absence of O_2 , the CH₃ radicals reacted to products other than C_2H_6 . The surface intermediates formed from these reactions may be rather stable at 200°C, and they may not yield gas phase products. The net loss of carbon to these surface intermediates would give rise to the unusually large values of Δ MB.

In most respects, the results obtained for the 10.3% V_2O_5/SiO_2 and the pure V_2O_5 samples were very similar, although x-ray diffraction results showed no evidence that a V_2O_5 crystalline phase existed on the SiO₂ at this loading

level. There is extensive Raman and NMR data which confirm that crystalline V_2O_5 is present on SiO₂ at a loading of ca. 10%, although there is disagreement as to whether the crystalline form exists at $\leq 3\%$ V_2O_5 (9–11). The fact that crystalline material can be detected at the 10% level by Raman spectroscopy, but not by x-ray diffraction, suggests that the crystallites are small (< 20 Å). In addition to the crystalline phase, vanadium is bound directly to SiO₂ as monomeric vanadyl species over a wide range of concentrations up to 10 wt%. The ratio of the monomeric to the crystalline form decreases with increasing loading (9).

TPSR experiments. TPSR results for the reaction of CH_3 · radicals with V_2O_5 are shown in Fig. 2. In the absence of added water, the principal product was HCHO, which is consistent with the results obtained in the flow experiments. Since N_2 from the decomposition of azomethane was not present, it was possible in the TPSR experiments to determine the formation of CO. Only small amounts of CO and CO₂ were formed; therefore, the combined selectivities to HCHO and CH₃OH were large. The maximum in the HCHO peak was at 260°C. These results suggest that if CH_3 · radicals could somehow be generated from CH_4 at low temperatures, it would be possible to convert them to CH_3OH and HCHO with a high selectivity.

FIG. 2. TPSR results after reaction of 3 mTorr CH_3 · radicals with V_2O_5 for 30 min at 150°C, followed by cooling to 50°C; (a) sample heated *in vacuo*, (b) sample heated in 9 mTorr H_2O : \bigcirc , CH_3OH ; \blacktriangle , HCHO; \diamondsuit , CO; \bullet , CO_2 .

Since the CH₃· radicals form methoxide ions on the V₂O₅ (see below), it was of interest to determine whether these ions would react with water to form CH₃OH. Upon heating the methylated sample in the presence of 9 mTorr H₂O, the results shown in Fig. 2b were obtained. It is evident that the CH₃OH peak area increased relative to the HCHO peak area; however, the effect of adding water was not as dramatic as that previously reported for the MoO₃/SiO₂ system (2). The extensive overlap of the CH₃OH and HCHO peaks suggests that methoxide ions may simultaneously convert to these two products or that the CH₃OH was rapidly converted to HCHO.

Analogous experiments were carried out on the V_2O_5/SiO_2 catalysts, and the results are shown in Fig. 3. Without added water, the TPSR maxima for CH₃OH and HCHO were shifted to higher temperatures. The shift in temperature may result, in part, from readsorption of CH₃OH and HCHO on the SiO₂. The maximum in the HCHO peak was at 405°C, and the CH₃OH peak was at 300°C. The separation between the maxima suggests that CH₃OH formed first, and that it was subsequently converted to HCHO only at somewhat higher temperatures. There may also exist a direct pathway for the conversion of methoxide ions to HCHO over the V₂O₅/SiO₂ catalyst.

FIG. 3. TPSR results after reaction of 3 mTorr CH_3 · radicals with 5.1% V_2O_5/SiO_2 for 30 min at 150°C followed by cooling to 50°C; (a) sample heated *in vacuo*, (b) sample heated in 7 mTorr H_2O : \bigcirc , CH_3OH ; \blacktriangle , HCHO; \diamondsuit , CO; \blacklozenge , CO₂.

FIG. 4. IR spectra of V_2O_5 catalyst after exposure of the sample to (a) 3 mTorr CH₃· radicals at 30°C and (b) 90 mTorr CH₃OH at 25°C.

The addition of water during the TPSR caused a substantial increase in the amount of CH_3OH relative to the amount of HCHO. The increase in the amount of CH_3OH is most apparent at the lower temperatures. At ca. 200°C and in the presence of H_2O , the ratio of $CH_3OH/HCHO$ was ca. 5. The shape of the CH_3OH peaks for the V_2O_5 and the V_2O_5/SiO_2 catalysts is similar, which is expected if the same surface intermediate gives rise to the product.

Infrared evidence for methoxide ions. Methoxide ions are believed to be intermediates in the partial oxidation of CH₃OH to HCHO, over both MoO₃ and V₂O₅ catalysts (12, 13). The most direct evidence for the involvement of methoxide ions comes from the infrared spectra of the oxide catalysts following reaction with CH₃OH. Similarly, we have proposed that CH₃· radicals react with metal oxides having reducible cations according to reaction 3 (3):

$$CH_3 \cdot + M^{n+1}O^{2-} \rightarrow M^{n+}(OCH_3)^-.$$
 [3]

Following the reaction of CH_3 radicals with CeO_2 at $25^{\circ}C$, there was infrared evidence for methoxide ions on the surface (3).

The infrared spectrum following the reaction of CH₃· radicals with V_2O_5 at 30°C is shown in spectrum a of Fig. 4. For reference purposes the spectrum obtained by reacting 90 mTorr CH₃OH with V_2O_5 at 25°C is given also (spectrum b). The signal-to-noise ratio is rather poor because of the low surface area of the V_2O_5 and the small amount of the reagent that was added to the oxide. Nevertheless, distinct bands are evident, which may be used to identify the species present on the surface. The bands observed in this study are compared in Table 5 with those reported by other investigators for CH₃OH adsorbed on V_2O_5 (13) and SiO₂ (14) and for CH₃OH in the liquid phase (15).

Infrared Bands of Methoxide Ions and Methanol								
$\begin{array}{c} CH_3/V_2O_5\\ (this study)\\ (cm^{-1}) \end{array}$	CH ₃ OH/V ₂ O ₅ (Busca, 13) (cm ⁻¹)	$\begin{array}{c} CH_{3}OH/V_{2}O_{5}\\ (this study)\\ (cm^{-1}) \end{array}$	$\begin{array}{c} \text{CH}_3\text{OH/SiO}_2\\ \text{(Clark et al$, 14$)}\\ \text{(cm}^{-1}) \end{array}$	CH ₃ OH(<i>l</i>) (15) (cm ⁻¹)	Assignment			
			3003	3000	CH ₃ OH, v _{CH}			
		2950	2956	2950	CH ₃ OH, ν_{CH}			
2930	2930				CH ₃ O ⁻ , ν _{CH}			
		2920	2921		CH ₃ OH, ν_{CH}			
			2848	2845	CH ₃ OH, ν_{CH}			
2830	2830				CH ₃ O ⁻ , ν _{CH}			
		2820			CH ₃ O ⁻ , ν _{CH}			
		1480	1470	1475	CH ₃ OH, δ_{CH}			
		1450	1451	1454	CH ₃ OH, δ_{CH}			
1445	1448				CH ₃ O ⁻ , δ_{CH}			
1430	1435	1430			CH ₃ O ⁻ , δ _{CH}			
	1380	1350	1366		CH ₃ OH, δ_{OH}			
1150	1155	1150		1115	CH ₃ OH, CH ₃ O ⁻ , r _{CH₃}			
				1160	-			
1065	1070	1060		1040	CH ₃ OH, CH ₃ O ⁻ , ν _{CO}			

TABLE 5 Infrared Bands of Methoxide Ions and Methan

The bands in spectrum a at 2930, 2830, 1445, 1430, 1150, and 1065 cm⁻¹ are in good agreement with those that Busca (13) assigned to methoxide ions. Although the C–O stretching band at 1065 cm⁻¹ is present as a shoulder on a strong band due to a lattice mode of V_2O_5 , difference spectra provide convincing evidence for its existence. This band is significant because it confirms that CH₃· radicals reacted with the surface to form a new species (i.e., methoxide ions) that contain a C–O bond. The methoxide ions on V_2O_5 may either decompose to yield HCHO or they may react with water to produce CH₃OH. By analogy, we have previously shown that MoO(OCH₃)₄ reacts with water to form CH₃OH (16).

Spectrum b indicates that, following adsorption of methanol on V₂O₅, the molecularly adsorbed species was mainly present on the surface. This conclusion is based on the good agreement between the bands at 2950, 2920, 1480, and 1350 cm⁻¹ and similar bands for physically adsorbed CH₃OH on SiO₂ and for liquid CH₃OH as reported in Table 5. The band at 3000 cm^{-1} is relatively weak in the references cited. Bands at 2820 and 1430 cm⁻¹ in spectrum b may indicate that methoxide ions also were present; however, the expected band at 2930 cm^{-1} is not apparent. This band might be masked by the band at 2920 cm^{-1} . Alternatively, the expected band at 2848 cm⁻¹ for CH₃OH may be shifted to 2820 cm⁻¹ when the molecule is adsorbed on V2O5. It is not clear why methoxide ions were the dominant species in the work of Busca (13) when CH₃OH was added to V₂O₅; whereas, molecularly adsorbed CH₃OH was the dominant species in this study. His sample was a fumed V_2O_5 having a surface area of 18 m²/g.

ESR evidence for the reduction of V^{5+} by CH_{3^*} radicals. In support of reaction 3, it was previously demonstrated that CH₃· radicals reacted with 2 wt% MoO₃/SiO₂ at 25°C and reduced Mo⁶⁺ to Mo⁵⁺ (3). The Mo⁵⁺ ions were detected by their characteristic ESR spectrum. Analogous results were obtained using the pure V₂O₅ sample, and the spectra are shown in Fig. 5. It is very difficult to obtain completely stoichiometric V₂O₅, as is evident from spectrum a, which is attributed to the presence of a small amount of paramagnetic V⁴⁺. This sample had been pretreated in 200 mTorr of O₂ at 350°C and cooled in O₂ to 25°C. A sample that had first been oxidized and then exposed to 20 mTorr C₂H₆

FIG. 5. ESR spectra of V_2O_5 catalyst after exposure of sample to (a) 200 mTorr O_2 at 350°C for 30 min, followed by cooling in O_2 to 25°C, (b) 20 mTorr C_2H_6 at 25°C for 30 min, and (c) 1 mTorr CH_3 · radicals at 25°C for 30 min.

was even further reduced, as indicated by the greater amplitude of spectrum b. The 20 mTorr is more than an order of magnitude greater than the pressure of C_2H_6 that might be expected during the exposure of the oxidized V_2O_5 sample to CH_3 · radicals. Most significantly, the amplitude of the ESR spectrum was the largest when the oxidized sample was exposed to 1 mTorr of CH_3 · radicals for 30 min at 25°C (spectrum c).

The vanadium in V_2O_5 is present in a highly distorted octahedron, with one oxygen ion being close to and one being very far from the metal ion (17). Thus, if V^{4+} were formed by the reduction of V^{5+} , without removal of an oxygen atom, one would expect an anisotropic ESR signal, with sets of eight hyperfine lines. Normally, V₂O₅ exhibits a single broad line at g = 1.98 (18, 19); however, a careful study by Boesman and Gillis (20) of Mo-doped V₂O₅ single crystals revealed well resolved vanadium hyperfine structure that was attributed to V⁴⁺ at lattice sites in the crystal. The spectrum of Mo-doped V₂O₅ was characterized by $g_x = 1.905$, $g_v = 1.981$, and $g_z = 1.977$ with $a_x = 158.5$ G, $a_v = 52.8$ G, and $a_z = 50.8$ G. It should be noted that the principal components of the g and a tensors indicate nearly axial symmetry. In the polycrystalline spectrum of Fig. 5c, the most evident hyperfine lines are attributed to the a_{\perp} components, and the four low-field lines are indicated above the spectrum. The values of $g_{\perp} = 1.98$ and $a_{\perp} = 49$ G are in good agreement with the parameters reported by Boesman and Gillis. There is less certainty about the parallel components, although values of $g_{\parallel} = 1.93$ and $a_{\parallel} = 151$ G appear to be consistent with spectrum c and the results obtained with the Mo-doped V₂O₅ single crystal. No inflection was detected at the position of the lowest field hyperfine lines, but this may reflect the fact that the outer components of the polycrystalline spectrum are lower in amplitude. The value of $g_{\parallel} = 1.93$ is significantly greater than the value of $g_x = 1.905$, and this difference suggests that the crystal field gradient at the V⁴⁺ center in the polycrystalline V_2O_5 is larger than the gradient in the single crystal, perhaps because of surface effects.

CONCLUSIONS

Both CH_3 · radicals and CH_3OH react with V_2O_5 to form surface methoxide ions. These ions may decompose to yield HCHO or they may react with protons, derived from H_2O or hydroxyl groups on silica, to form CH_3OH according to the following scheme:

$$CH_{3}OH \underset{+H^{+}}{\overset{-H^{+}}{\longleftrightarrow}} CH_{3}O_{s}^{-} \rightarrow HCHO + OH_{s}^{-}.$$
 [4]

The methoxide ions also serve as intermediates in the partial oxidation of CH₃OH to HCHO. Under flow conditions, CH₃· radicals react over supported and unsupported V_2O_5 at temperatures greater than 300°C to form mainly formaldehyde as the oxygenated product. Since water was present in the system and methanol is readily converted to formaldehyde over these catalysts, it is difficult to determine whether CH₃OH was an initial product. The larger CH₃OH/HCHO ratios observed for the V₂O₅/SiO₂ catalysts, particularly at smaller loadings, may result from the reaction of surface protons (i.e., hydroxyl groups) with methoxide ions that are stabilized at the V-O-Si interfaces. TPSR results over V₂O₅/SiO₂ suggest that CH₃OH was formed at a lower temperature than HCHO and therefore is an intermediate product, but over pure V_2O_5 and the 10.3% V₂O₅/SiO₂ catalyst, HCHO may be formed directly from methoxide ions. In any event, CH₃OH and HCHO have a common intermediate; namely, methoxide ions. Most significantly, it is possible to convert CH₃ radicals to HCHO under relatively mild conditions, and, except for the coupling reaction, the selectivity to HCHO is large.

ACKNOWLEDGMENT

This research was supported by the Office of Basic Energy Sciences, U.S. Department of Energy.

REFERENCES

- 1. Lunsford, J. H., Langmuir 5, 12 (1985).
- Pak, S., Rosynek, M. P., and Lunsford, J. H., J. Phys. Chem. 98, 11786 (1994).
- 3. Tong, Y., and Lunsford, J. H., J. Am. Chem. Soc. 113, 4741 (1991).
- 4. Spencer, N. D., and Pereira, C. J., J. Catal. 116, 399 (1989).
- Xu, M., Ballinger, T. H., and Lunsford, J. H., J. Phys. Chem. 99, 14494 (1995).
- Hall, R. B., Castro, M., Kim, C.-M., Chen, J., and Mims, C. A., *Petrol. Div. Prepr.* **39**, 282 (1994).
- Smudde, G. H., Yu, M., and Stair, P. C., J. Am. Chem. Soc. 115, 1988 (1993).
- Lieszkovsky, L., Filippelli, A. R., and Tilford, C. R., *J. Vac. Sci. Technol. A* 8, 3838 (1990).
- Oyama, S. T., Went, G. T., Lewis, K. B., Bell, A. T., and Somorjai, G. A., *J. Phys. Chem.* **93**, 6786 (1989); Went, G. T., Oyama, S. T., and Bell, A. T., *J. Phys. Chem.* **94**, 4240 (1990).
- Deo, G., and Wachs, I. E., J. Phys. Chem. 95, 5889 (1991); J. Catal. 129, 307 (1991).
- Koranne, M. M., Goodwin, J. G., and Marcelin, G., J. Catal. 148, 369 (1994).
- 12. Machiels, C. J., and Sleight, A. W., J. Catal. 76, 239 (1982).
- 13. Busca, G., J. Molec. Catal. 50, 241 (1989).
- Clarke, D. B., Lee, D.-K., Sandoval, M. J., and Bell, A. T., *J. Catal.* 150, 81 (1994).
- Schwader, B., and Meier, W. (Eds.), "Raman/IR Atlas of Organic Compounds," p. A3. Verlag Chemie, Weinheim, 1977.
- Liu, H.-F., Liu, R.-S., Liew, K. Y., Johnson, R. E., and Lunsford, J. H., J. Am. Chem. Soc. 106, 4117 (1984).
- Kung, H. H., "Transition Metal Oxides: Surface Chemistry and Catalysis," p. 12. Elsevier, Amsterdam, 1989.
- Takahashi, H., Shiotani, M., Kobayashi, H., and Sohma, J., *J. Catal.* 14, 134 (1969).
- Whittington, B. I., and Anderson, J. R., J. Phys. Chem. 97, 1032 (1993).
- 20. Boesman, E., and Gillis, E., Phys. Status. Solidi 14, 349 (1966).